Données cristallines

$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3}$
$M_{r}=254,36$
Orthorhombique
$P 2 \mid{ }_{2} 2_{1}$
$a=7,449$ (3) \AA
$b=10,724$ (4) \AA
$c=17,733(10) \AA$
$V=1416.6(11) \AA^{3}$
$Z=4$
$D_{x}=1,193 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} non mesurée

Collection des données
Diffractomètre Philips PW1100
Balayage $\theta / 2 \theta$
Pas de correction
d'absorption
1621 réflexions mesurées
1621 réflexions
indépendantes

Affinement

Affinement à partir des F^{2}
$(\Delta / \sigma)_{\text {max }}=-0,002$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0,040$
$w R\left(F^{2}\right)=0,133$
$S=1,090$
1619 réflexions
169 paramètres
Les atomes d'H: voir cidessous
$\boldsymbol{n}=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0,0748 P)^{2}\right.$ $+0,2158 P]$
où $P=\left(F_{r}{ }^{2}+2 F_{c}^{2}\right) / 3$

Tableau 1. Paramètres géométriques $\left({ }^{\circ}\right)$

C6-C1-C2-C3	62.5 (2)	C7-C9-C10-Cll	50.1 (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C}+$	-49.1(2)	$\mathrm{C} 9-\mathrm{ClO}-\mathrm{Cll}-\mathrm{Cl}$	-42.7 (2)
C2-C3-C4-C5	37.1 (2)	$\mathrm{ClO}-\mathrm{Cl}-\mathrm{Cl}-\mathrm{C} 6$	50.1 (2)
C3-C4-C5-C6	-42.1 (2)	C6-C1--C2-O17	-64.5 (2)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl}$	56.8 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 17-\mathrm{Cl} 3$	54.2 (2)
C5-C6-Cl-C2	-65.0(2)	$\mathrm{C} 2-\mathrm{Ol7-C13-C7}$	--42.2 (2)
$\mathrm{Cll}-\mathrm{Cl}-\mathrm{C6}-\mathrm{C} 7$	-63.0)(2)	O17-C13-C7-C6	$42.312)$
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$	65.6 (2)	$\mathrm{C13-C7-C6-Cl}$	-54.9 (2)
C6-C7-C9-C10	-60.3(2)	C7-C6-C1-C2	64.8 (2)

Les atomes d'H tous localisés sur séries-différence ont été recalculés en position théorique selon le modèle défini par SHELXL93 et affectés d'un facteur de température isotrope équivalent à celui de l'atome porteur $\times 1.2$, ou $\times 1.4$ pour les H des groupes méthyles et hydroxyles.
Collection des données: PW1100/20 Software (Philips, 1978). Affinement des paramètres de la maille: PW1100/20 Software. Réduction des données: PHIL (Riche, 1981). Programme(s) pour la solution de la structure: SHELXS86 (Sheldrick, 1985). Programme(s) pour l'affinement de la structure: SHELXL93 (Sheldrick, 1993). Graphisme moléculaire: R3M (Riche, 1983), ORTEP (Johnson, 1965). Logiciel utilisé pour préparer le matériel pour publication: SHELXL93.

Mo $K \alpha$ radiation
$\lambda=0,71090 \AA$
Paramètres de la maille à
l'aide de 25 réflexions
$\theta=7,1-11,2^{\circ}$
$\mu=0,081 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prisme
$0,60 \times 0,30 \times 0,30 \mathrm{~mm}$
Incolore

1434 réflexions avec
$I \geq 2 \sigma(I)$
$\theta_{\text {max }}=25,99^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 13$
$l=0 \rightarrow 21$
3 réflexions de référence fréquence: 120 min variation d'intensité: néant

Des documents complémentaires concernant cette structure peuvent être obtenus à partir des archives électroniques de l’UICr (Référence: GS1013). Les processus d’accès à ces archives sont donnés au dos de la couverture.

Références

Chiaroni, A., Riche, C.. Benharref, A., Chekroun, A. \& Lavergne, J.-P. (1992). Acta Cņst. C48, 1720-1722.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, EU.
Joseph, T. C. \& Dev, S. (1968). Tetrahedron. 24, 3809-3827.
Philips (1978). PWII00/20 Software. Philips, Eindhoven, Les PaysBas.
Plattier, M. \& Teisseire. P. (1974). Recherches, 19. 131-139.
Riche, C. (1981). PHIL. Logiciel pour la Réduction des Données du Diffractomètre Philips PWIIOO. Institut de Chimie des Substances Naturelles du CNRS, France.
Riche, C. (1983). R3M. Représentation et Manipulation de Modèles Moléculaires. Institut de Chimie des Substances Naturelles du CNRS, France.
Sheldrick. G. M. (1985). SHELXS86. Program for the Solution of Cristal Structures. Université de Göttingen, Allemagne.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Cristal Structures. Université de Göttingen. Allemagne.

Acta Cryst. (1998). C54, 1965-1968

Structure-Activity Relationships in 16- and 17-Substituted 5-Androstenes: 3 β-Acetoxy17β-picolyl-5-androsten-16-one

Dušan Lazar, ${ }^{a}$ Slobodanka Stanković, ${ }^{a}$ Marija Sakač, ${ }^{a}$ Katarina Penov-Gašić, ${ }^{a}$ Radmila Kovačević, ${ }^{a}$ Ljubica Medić-Muačević ${ }^{b}$ and Tullio Pilatic ${ }^{\text {c }}$
${ }^{\text {a }}$ Faculty of Sciences, University of Novi Sad, Trg Dositeja
Obradovića 4, 21000 Novi Sad, Yugoslavia, ${ }^{\text {b }}$ ICN-Galenika, Institute, 29. Novembar 111, 11000 Beograd, Yugoslavia, and 'CSRSRC, Dip. Chimica Fisica et Elettrochimica, Via Golgi 19, 20133 Milano, Italy. E-mail: dlazar@unsim. ns.ac.yu
(Received 10 Februan 1998; accepted 9 July 1998)

Abstract

The title compound, 3β-acetoxy-17 β-picolyl- 5 -androsten-16-one, $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{3}$, was synthesized from a mixture of Z and E isomers of 33 -acetoxy-17-picolinylidene5 -androsten-16-one. The significant difference in these three compounds in the crystalline state lies in the conformation of the five-membered D ring, as well as in the orientation of the bulky substituent at C17. After molecular-mechanics calculations on the individual molecules, the conformational differences of the D ring disappeared, but the differences in the orientation of the
substituent at C17 increased. The remarkable differences in biological activity of these compounds could therefore be due to the different orientations of the bulky C17 substituent.

Comment

As a continuation of our study on the structureactivity relationships in 16 - and 17 -substituted estrane and androstane derivatives, we performed an investigation of 3β-acetoxy- 17β-picolyl- 5 -androsten-16-one, (3). The compound was synthesized from the Z and E isomers of 3β-acetoxy-17-picolinylidene-5-androsten16 -one, (1) and (2), respectively. The structures of (1) and (2) have been reported previously (Stanković et al., 1989). The structure of compound (3), deduced from chemical spectroscopic evidence, was confirmed by X-ray diffraction analysis. Molecular-mechanics calculations (MMC) for all three compounds were performed using the PCMODEL program (Serena Software, 1989), to establish possible changes in the conformations and distances between the functional groups in the molecules when released from interactions with surrounding molecules in the crystalline state.

Since the starting materials were synthesized from the natural androstene derivative 3β-hydroxy- 5 -androsten-17-one, the absolute stereochemistry of which is known (Fieser \& Fieser, 1967), the X-ray structure of (3) is described for the appropriate enantiomer.

A perspective view of the molecule is shown in Fig. 1. Bond distances and angles of the steroid skeleton are in agreement with those of the two isomers, (1) and (2). The main differences appear in the distances, bond angles and torsion angles of the five-membered D ring, as a result of different conformations of this ring (Table 1). According to the ring-puckering parameters (Cremer \& Pople, 1975) and asymmetry parameters
(Duax et al., 1976), the D ring in the title compound (3) adopts an ideal 13β-envelope conformation [the distance of C13 from the best plane of the remaining four atoms is $0.708(4) \AA$]. In compound (1), ring D has a $13 \alpha, 14 \beta$-half-chair conformation, while in compound (2), it exhibits a form intermediate between half-chair and envelope. The six-membered A, B and C rings in (3) have the usual conformations of 5 -ene structures: rings A and C adopt chair conformations, while ring B exhibits an $83,9 \alpha$-half-chair conformation. The differences in the conformations of molecules (1), (2) and (3) in the crystalline state can be seen in Fig. 2(a).

After energy minimization there was a significant change in the conformation of the D ring of the title

Fig. 1. A perspective view of the title molecule, with the atomic labelling. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as spheres of arbitrary radii.

(a)

(b)

Fig. 2. The superimposed fits of the moleculcs of compounds (1) (dashed), (2) (dashed-dotted) and (3) (solid) (a) in the crystalline state and (b) after MMC.
compound, which became a $13 \beta, 14 \alpha$-half-chair [similar to those of (1) and (2)], followed by a slight change in the orientation of the picolyl moiety. The superposition of the molecules after energy minimization (Fig. $2 b$) shows an improvement in the similarity of the steroid skeletons.
The potential antiandrogenic activity of compounds (1), (2) and (3) was tested in vitro (Marić et al., 1996) by examining the inhibition of certain steroidogenic enzymes, as well as the competition for androgen receptors obtained from rat prostate (Martsche \& Koritnik, 1987). It has been shown that compound (3) blocks the activity of 3β-hydroxy-steroid dehydrogenase (3β-HSD), while (1) and (2) have no effect. On the other hand, compound (2) inhibits the activity of 17α-hydroxylase/17,20-lyase (P450cl7), while its isomer, (1), has no effect. The tested substances did not compete for androgen receptors in rat prostate.
The significant differences in the orientations of the C17 substituents could be the only reason for the remarkable differences observed in the biological activity of the compounds tested. It seems that the orientation of the bulky substituent at Cl 7 , relative to the length of the molecule, is of crucial importance in biological activity, not only of oestrogen derivatives (Duax et al., 1985), but also of androgen compounds.

Experimental

The title compound, (3), was synthesized by catalytic hydrogenation at room temperature of both the Z and E isomers of 3β-acetoxy-17-picolinylidene-5-androsten-16-one, (1) and (2), with yields of 57 and 62%, respectively (Miljković et al., 1985; Medić-Mijačević et al., 1993).

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{3}$
$M_{r}=421.56$
Orthorhombic
$P 2,2,2$,
$a=9.727$ (2) \AA
$b=10.335(2) \AA$
$c=24.177$ (5) \AA
$V=2430.5(9) \AA^{3}$
$Z=4$
$D_{x}=1.152 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer $\omega / 2 \theta$ scans Absorption correction: none 4079 measured reflections 3185 independent reflections 1799 reflections with
$I>2 \sigma(I)$
$R_{\text {tit }}=0.029$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 45 reflections
$\theta=7.64-22.50^{\circ}$
$\mu=0.074 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Tablet
$0.45 \times 0.23 \times 0.13 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=22.5^{\circ}$
$h=-1 \rightarrow 10$
$k=0 \rightarrow 11$
$l=-26 \rightarrow 26$
3 standard reflections every 197 reflections
intensity decay: 4.44%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$\mathrm{w}^{\prime} R\left(F^{2}\right)=0.190$
$S=0.893$
3135 reflections
282 parameters
H atoms constrained
$u^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1008 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{\iota}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.012$
$\Delta \rho_{\text {max }}=0.154 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.127 \mathrm{e}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.004 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{C} 13-\mathrm{Cl} 4$	$1.530(7)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.527(8)$
$\mathrm{C} 13-\mathrm{C} 17$	$1.545(7)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.515(8)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.538(7)$		
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17$	$100.3(4)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$108.5(5)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$103.8(4)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 13$	$101.3(4)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$	$103.2(5)$		
$\mathrm{C} 17-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 8$	$177.9(4)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-0.4(6)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$167.1(4)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 13$	$28.3(6)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-28.2(5)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17-\mathrm{C} 16$	$-44.8(5)$
$\mathrm{C} 8-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-158.1(5)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 17-\mathrm{Cl} 6-159.5(5)$	

The crystals were very thin and their diffracting power was very low, so the data collection was stopped at $\theta=22.5^{\circ}$. This was because only 106 of the 582 reflections collected in the range $21.0<\theta<22.5^{\circ}$ had $I>2 \sigma(I)$, which meant that an extension of the data collection would only introduce noise. On the other hand, the high s.u.'s could be partly related to the θ cutoff. H atoms were generated and refined as riding groups with $U(\mathrm{H})=1.2 U_{\text {cq }}($ carrier atom $)$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

Data collection: XSCANS (Siemens, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CSU (Vicković, 1988).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1052). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435. Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L., Griffin, J. F. \& Ebright, R. H. (1985). Molecular Basis of Cancer, Part B: Macromolecular Recognition and Immunolog., pp. 263-273. New York: Allan R. Liss.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.
Fieser, L. F. \& Fieser, M. (1967). Steroids, pp. 507-511. New York: Reinhold.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Marić, D., Kostić, T. \& Kovačević, R. (1996). J. Steroid Biochem. Mol. Biol. 58, 351-355.
Martsche, K. \& Koritnik, D. (1987). J. Steroid Biochem. 26, 443-450.
Medić-Mijačević, D. Lj., Miljković, A. D., Sakač, N. M. \& Gaši, M. K. (1993). Proceedings for Natural Sciences, No. 84. pp. 6972. Novi Sad: Matica Srpska.

Miljković, D.. Gaši, K., Kindjer, M., Stanković, S.. Ribár, B. \& Argay, Gy. (1985). Croat. Chem. Acta, 58, 721-736.

Serena Software (1989). PCMODEL. Molecular Modeling Sofiware for IBM XT/AT and Compatibles. Version 4.0. Serena Software. Bloomington, Indiana. USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Stanković, S.. Ribár, B.. Miljković. D.. Gaši, K. \& Courscille, C. (1989). Acta Cryst. C45, 491-495.

Vicković, I. (1988). CSU. Crystal Structure Utiliṭy Program. University of Zagreb, Croatia.

Acta Cryst. (1998). C54, 1968-1970

Two 1-(Arylacetyl)-2-(aminomethyl)piperidine Derivatives, a Novel Class of Highly Selective $\boldsymbol{\kappa}$-Opioid Analgesics

Oswald M. Peeters, Dorota Jamroz, Norbert M. Blaton and Camiel J. De Ranter
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium. E-mail: maurice.peeters@farm.kuleuven. ac.be

(Received 8 May 1998; accepted 10 June 1998)

Abstract

The single-crystal X-ray structures of $(+)-1-\{(2 R)-$ 1-[(3,4-dichlorophenyl) acetyl] piperidin-2-ylmethyl $\}$ pyrrolidinium chloride monohydrate $\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+}\right.$.-$\left.\mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O} ; \mathrm{BRL}-52536 \mathrm{~A}\right)$ and $(-)-1-\{(2 S)-1-[(3,4-\mathrm{di}-$ chlorophenyl)acetyl]piperidin-2-ylmethyl $\}$ piperidinium chloride $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{Cl}^{-}\right.$; BRL-52781A) have been determined. BRL-52536A is the inactive stereoisomer of BRL-52537A, the highly selective and potent lead compound of the series. The pharmacophore N -$\mathrm{C}-\mathrm{C}-\mathrm{N}_{s p^{2}}$ torsion angle is $(+)$-synclinal in the $2 S$ configuration.

Comment

Over the last decade, κ-opioid agonists have received increased interest as possible safe and effective analgesics for the treatment of acute and chronic pain (Rees, 1992). Vecchietti et al. (1991) described the synthesis and structure-activity relationships as κ-opioid analgesics of a novel class of 1-(arylacetyl)-2-(aminomethyl)piperidine derivatives. Antinociceptive activity and κ affinity were found to be extremely enantiospecific since only compounds with the $2 S$ configuration displayed significant activity. Futhermore, it was
concluded from computational studies and ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis (Vecchietti et al., 1991) that the pharmacophore $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}_{s p}$: torsion angle should be ca 60° in a low energy conformation. In order to confirm these results the crystal structures of two members of the series were determined, namely, $(+)-1-\{(2 R)-1-[(3,4-\mathrm{di}-$ chlorophenyl)acetyl]piperidin-2-ylmethyl $\}$ pyrrolidinium chloride monohydrate (BRL-52536A) and (-)-1-\{(2S)-1-[(3,4-dichlorophenyl)acetyl]piperidin-2-ylmethyl\} piperidinium chloride (BRL-52781A).

BRL-52781A

The bond lengths do not display outstanding features. The internal angles of the phenyl ring reflect the substitution pattern (Domenicano \& Murray-Rust, 1979). The piperidine ring has a chair conformation slightly flattened towards an envelope conformation, with the flap at C 12 , resulting in an enlarged $\mathrm{C} 13-$ C14-C15 angle. The 2 -substituent is in an axial position and in a syn conformation with respect to the carbonyl O atom. The global conformation of the molecules is futher determined by the torsion angles $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8, \mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 10, \mathrm{~N} 10-\mathrm{C} 15-$ C16-N17 and C15-C16-N17-H17. In both crystal structures, the pharmacophore $\mathrm{N} 10-\mathrm{Cl5}-\mathrm{Cl} 6-$ N17 torsion angle and the C15-C16-N17-H17 torsion angle are synclinal, confirming the computational results. The observed conformation is probably a result of the electronic attraction between the charged N atom and the carbonyl group. The dihedral angle between the least-squares planes of the phenyl and amido groups is $101.0(1)$ and $97.1(1)^{\circ}$ in BRL-52536A and BRL-52781A, respectively, indicating perpendicularity of the two planes. In both structures, the Cl^{-} anion is hydrogen bonded to N 17 [$\mathrm{N} 17 \ldots \mathrm{Cl} 3.098$ (3) and $3.097(2), \mathrm{H} 17 \cdots \mathrm{Cl} 2.22$ and $2.21 \AA$, and N17$\mathrm{H} 17 \cdots \mathrm{Cl} 162$ and 166°, for BRL-52536A and BRL-

